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Continuous-variable teleportation of a negative Wigner function
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Teleportation is a basic primitive for quantum communication and quantum computing. We address the problem
of continuous-variable (unconditional and conditional) teleportation of a pure single-photon state and a mixed
attenuated single-photon state generally in a nonunity-gain regime. Our figure of merit is the maximum negativity
of the Wigner function, which demonstrates a highly nonclassical feature of the teleported state. We find that the
negativity of the Wigner function of the single-photon state can be unconditionally teleported for an arbitrarily
weak squeezed state used to create the entangled state shared in teleportation. In contrast, for the attenuated
single-photon state there is a strict threshold squeezing one has to surpass to successfully teleport the negativity
of its Wigner function. The conditional teleportation allows one to approach perfect transmission of the single
photon for an arbitrarily low squeezing at a cost of decrease of the success rate. In contrast, for the attenuated single
photon state, conditional teleportation cannot overcome the squeezing threshold of the unconditional teleportation
and it approaches negativity of the input state only if the squeezing increases simultaneously. However, as soon as
the threshold squeezing is surpassed, conditional teleportation still pronouncedly outperforms the unconditional
one. The main consequences for quantum communication and quantum computing with continuous variables are
discussed.
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I. INTRODUCTION

Quantum teleportation is a fundamental primitive in
quantum information [1–3]. Principally, it allows remote
decomposition of the quantum state to noise and the necessary
classical information required to uncover that state from the
noise. In the quantum key distribution, teleportation between
distant parties combined with quantum repeaters can transmit
fragile quantum resources over a large distance [4–6]. In
quantum computation, teleportation allows for fault-tolerant
deterministic implementation of a difficult quantum gate on
an unknown quantum state [7,8].

For quantum states in an infinite-dimensional Hilbert space,
quantum squeezing is an irreducible resource for universal
quantum teleportation [2,3]. Quantum squeezed states are
states with variance of a quadrature below the vacuum noise.
Although the squeezed states are nonclassical, as they have
no regular and positive Glauber-Sudarshan quasiprobability
distribution, their nonclassicality can still be simulated by
semiclassical methods. This results from the fact that squeez-
ing is simply observable in a Gaussian approximation, since the
squeezed states are represented there by positive and regular
Wigner functions, which then play the role of probability
distributions. Thus the Wigner function of a squeezed state can
be obtained simply by deforming the stochastic phase-space
evolution of an irreducible vacuum state [9–11]. It does not
prevent, for example, quantum key distribution for a limited
distance, but it does not allow universal quantum computing
[12]. In contrast, nonclassicality substantially reflecting a dis-
crete particle structure of quantum states cannot be efficiently
simulated by these stochastic methods [11]. The corresponding
Wigner function of the particlelike state can exhibit negative
values, invalidating its interpretation as any kind of classical
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probability density. The negative values are considered as a
clear experimental demonstration of quantum features beyond
the semiclassical description [13].

Neither long-distance quantum key distribution nor quan-
tum computing can be performed solely based on the squeezing
resource. Highly nonclassical repeaters in the sequential
teleportation protocol [4–6] or many highly nonclassical cubic
phase gates [14] in a complex quantum computer change
propagating states to non-Gaussian states with a negative
Wigner function. In both cases, teleportation of the negative
Wigner function with just squeezing as a resource is a basic
element of the communication and computation tasks. In
efficient quantum key distribution with quantum repeaters,
Gaussian teleportation should, at least probabilistically, allow
propagation of the negativity of the Wigner function produced
by the repeater operation through the network toward the next
quantum repeater. In quantum computation, it should even
deterministically realize a basic highly nonlinear cubic phase
gate [14], if such the offline gate is, at least probabilistically,
feasible.

The quality of teleportation is mainly limited by the
finite squeezing resource. How much squeezing resource is
actually required to at least partially maintain the negativity
of the Wigner function through the teleportation step? The
answer to this question determines how much squeezing
is necessary to decompose higher nonclassical states. Since
teleportation is the basic primitive for quantum communication
and computation, it also specifies the amount of squeez-
ing needed to deterministically (or probabilistically) operate
highly nonclassical states. In this paper, we give a clear and
illustrative answer to this basic question. As the first testing
state, the single-photon Fock state having the maximal possible
negativity of the Wigner function is considered at the input
of teleportation. The negativity is then lowered by a loss
implemented on the single-photon state. Our attempt is to show
directly the effect of Gaussian teleportation on the different
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values of negativity of the Wigner function, thus judging its
possible application in long-distance quantum communication
and quantum cryptography.

The mechanism of teleportation of a single-photon state
(or superposition of the coherent states) was analyzed in
Refs. [3] and [15–17], but always using the fidelity [18,19],
entanglement fidelity [20], or photon-number distribution [21],
as a figure of merit. For unity-gain teleportation, the fidelity
benchmark 2/3 was found to be a necessary condition to
achieve teleportation of a negative Wigner function [22]. This
corresponds to −3 dB of squeezing required in entanglement
preparation. However, fidelity does not tell directly if the
teleported state still has some negativity of the Wigner function
and how large it is.

In this paper we investigate the capability of the standard
teleportation protocol [3] to successfully teleport negativity of
the Wigner function in the origin of the single-photon Fock
state and the convex mixture of the state with the vacuum
state. Our goal is to find teleportation protocols minimizing the
value of the output Wigner function in the origin. We find that
for the single-photon Fock state an arbitrarily small nonzero
squeezing suffices to successfully teleport a negative value of
the Wigner function in the origin if the gain of teleportation is
chosen suitably. In contrast, to teleport a negative value of the
Wigner function in the origin of the attenuated single-photon
Fock state, one has to surpass a strict threshold level of
squeezing. For both cases of input states one can attain
a substantially larger negative value of the output Wigner
function in the origin by using conditional teleportation with a
reasonably high success probability. The postselection cannot
improve the squeezing threshold, however, if it is surpassed, a
higher negativity of the Wigner function can be achieved. The
sufficient tolerance of conditional teleportation to impurity of
the squeezed states used to produce the shared entangled state
demonstrates the feasibility of conditional teleportation.

The paper is organized as follows. Section II deals with
unity gain, optimal nonunity gain, and conditional telepor-
tation of a single-photon and squeezed single-photon Fock
state. In Sec. III we study unity gain, optimal nonunity
gain, and conditional teleportation of a convex mixture of
a single-photon Fock state and the vacuum state. Section IV
reports the conclusions.

II. TELEPORTATION OF A SINGLE-PHOTON
FOCK STATE

At the outset we focus on understanding the basic effects
of continuous-variable teleportation on the negativity of the
Wigner function. For this purpose we start with the simple
case of teleportation of a single-photon Fock state |1〉. The
state is described by the following Wigner function [23]:

Win(rin) = 1

π

(
2rT

inrin − 1
)

exp
(−rT

inrin
)
, (1)

where rin = (xin,pin)T is the radius vector in phase space. In
the origin the function attains the minimum possible negative
value allowed by quantum mechanics, equal to Win(0) =
−1/π

.= −0.3181, where here 0 stands for a zero 2 × 1 vector.
We consider a standard continuous-variable teleportation

protocol [3,24] in the nonunity-gain regime [25]. An in-

put mode characterized by the quadrature operators xin,pin

satisfying the canonical commutation rules [xin,pin] = i

prepared in the Fock state |1〉 is teleported by Alice
(A) to Bob (B). Initially, Alice and Bob hold modes A

and B, respectively, described by the quadratures xi,pi ,
i = A,B, in a pure two-mode squeezed vacuum state
with squeezed Einstein-Podolsky-Rosen variances 〈[�(xA −
xB)]2〉 = 〈[�(pA + pB)]2〉 = e−2r , where r is the squeezing
parameter. The state can be prepared by mixing of two pure
squeezed states with squeezed variances Vsq = 〈(�pA)2〉 =
〈(�xB)2〉 = e−2r/2 on a balanced beam splitter. Next, Alice
superimposes the input mode with mode A of the shared
entangled state on an unbalanced beam splitter with reflectivity√

R and transmissivity
√

T (R + T = 1) and measures the
quadratures xu = √

Rxin − √
T xA and pv = √

T pin + √
RpA

at the outputs of the beam splitter. She then sends the
measurement outcomes x̄u,p̄v via the classical channel to
Bob who displaces his mode B as xB → xB + gxx̄u, pB →
pB + gpp̄v , where gx,gp are electronic gains, thereby partially
re-creating the input state on mode B.

From the mathematical point of view nonunity-gain
teleportation belongs to the class of single-mode
trace-preserving completely positive Gaussian maps [26].
On the level of Wigner functions such a map transforms the
Wigner function of the input state Win(rin) according to the
integral formula [27]:

Wout(rout) = 2π

∫ +∞

−∞
Wχ (rin,rout)Win(�rin)drin, (2)

where rout = (xout,pout)T , � = diag(1,−1), and Wχ is the
following two-mode Gaussian kernel:

Wχ (rin,rout) = 1

2π2
√

detQ
exp(−�rT Q−1�r), (3)

where �r = rout − S�rin, Q is a real symmetric positive
semidefinite 2 × 2 matrix, S is a real 2 × 2 matrix, and the ma-
trices satisfy the inequality Q + iJ − iSJST � 0, where J =
(0 1
−1 0). For nonunity-gain teleportation we have, in particular,

S =
(

gx

√
R 0

0 gp

√
T

)
(4)

and Q = diag(Qx,Qp), where

Qx = cosh(2r) + g2
xT cosh(2r) − 2gx

√
T sinh(2r),

(5)
Qp = cosh(2r) + g2

pR cosh(2r) − 2gp

√
R sinh(2r).

Substituting Eqs. (4) and (5) into Eq. (3) and calculating the in-
tegral in Eq. (2) for the input Wigner function given by Eq. (1),
we find the output Wigner function in the origin in the form

Wout(0) = detQ − (detS)2

π [det(SST + Q)]
3
2

. (6)

From a practical point of view it is important to know
the largest negative value of the Wigner function that
can be obtained at the output of teleportation for a given
level of shared entanglement. This requires minimization
of function (6) for a fixed r over three variables gx , gp,
and T , which can barely be done analytically. Numerical
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minimization, however, indicates that as one would expect,
optimal performance of teleportation is achieved when the
beam splitter is balanced, that is,

√
R = √

T = 1/
√

2, and
when the teleportation adds noise symmetrically into position
and momentum quadrature, that is, gx = gp = g. Under these
assumptions and introducing the normalized gain G = g/

√
2,

we can express the Wigner function in the origin as

Wout(0) = α(G) − G2

π [α(G) + G2]2
, (7)

where α(G) = cosh(2r)(1 + G2) − 2G sinh(2r). From the
nominator in Eq. (7) it follows that for r > 0 there always
exists a gain G for which the Wigner function (7) is negative.
Solving the extremal equation dWout(0)/dG = 0 with respect
to G, one can find the optimal gain as a root of the following
third-order polynomial:

G3 + aG2 + bG + c = 0, (8)

where

a = −3 coth(r), b = 2 + coth2(2r) + 3
cosh(2r)

sinh2(2r)
,

(9)
c = − coth(2r).

The polynomial has three real roots of the form
G1,2,3 = y1,2,3 + coth(r), where

y1 = 2

√
−p

3
cos

(
φ

3

)
, y2,3 = −2

√
−p

3
cos

(
φ ± π

3

)
,

(10)

where cos φ = −(q/2)
√

−27/p3 and

p = b − a2

3
, q = c − ab

3
+ 2a3

27
. (11)

Substituting the roots G1,2,3 back into the right-hand side of
Eq. (7) and plotting the dependence of the obtained function
on the squeezed variance Vsq, one finds the optimal gain
Gopt minimizing the output Wigner function in the origin
to be Gopt = G2. The dependence of the output Wigner
function in the origin on the squeezed variance Vsq for optimal
nonunity-gain teleportation is depicted by the solid curve in
Fig. 1. The figure reveals that the Wigner function in the origin
is a monotonously decreasing function of the squeezing ap-
proaching the minimum value of Win(0) = −1/π

.= −0.3181
in the limit of infinitely large squeezing. Figure 1 further shows
that optimal nonunity-gain teleportation transfers the negative
values of the Wigner function successfully for arbitrarily
small nonzero squeezing r > 0. The latter finding should be
contrasted with the unity-gain regime that is recovered for√

R = √
T = 1/

√
2 and gx = gp = √

2. Then equations (4)
and (5) give S = 1, Q = 2e−2r1, which leads, using Eq. (6),
to the output Wigner function in the origin, in the form

W̃out(0) = 2e−2r − 1

π (2e−2r + 1)2
. (12)

Hence it immediately follows that in the unity-gain regime
the output Wigner function in the origin is negative only if
e−2r < 1/2, that is, if the squeezing is larger than −3 dB (see
also the dashed curve in Fig. 1), which corresponds to the
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FIG. 1. Output Wigner function in the origin versus the squeezed
variance Vsq for optimal nonunity-gain teleportation (solid curve),
unity-gain teleportation (dashed curve), and optimal conditional
teleportation with K = 0.3 (dash-dotted curve) of a single-photon
Fock state. See text for details.

fidelity benchmark F = 2/3 [22]. Thus while nonunity-gain
teleportation allows teleportation of a negative Wigner
function of the Fock state |1〉 for an arbitrarily small squeezing,
unity-gain teleportation requires more than −3 dB squeezing to
accomplish this task. For comparison we mention explicitly the
value of the output Wigner function in the origin for nonunity-
and unity-gain regimes for several values of squeezing. For
−3 dB squeezing the optimal nonunity-gain teleportation gives
Wout(0)

.= −0.0091, while unity-gain teleportation yields
W̃out(0)

.= 0.0002; for −5 dB we get Wout(0)
.= −0.0442

and W̃out(0)
.= −0.0439; for −7 dB we get Wout(0)

.= −0.0993
and W̃out(0)

.= −0.0977; and for −10 dB we get Wout(0)
.=

−0.1826 and W̃out(0)
.= −0.1768.

Summarizing the obtained results we see that for the
single-photon Fock state at the input of teleportation, we can
get a state with a negative Wigner function in the origin at the
output of teleportation for arbitrarily small squeezed variance
Vsq provided that the gain of the teleportation is adjusted
suitably. Achievement of a reasonably high negativity, not
less than an order of magnitude lower than the negativity at
the input, however, requires squeezed variances larger than
−5 dB. Substantially larger negative values for lower squeezed
variances are obtained by using conditional teleportation,
where we accept the output state only when the outcome of
Alice’s measurement β ≡ (x̄u + ip̄v)/

√
2 falls inside a circle

centered in the origin with radius K , that is, falls into the set
� = {β,|β| � K,K > 0}. If a measurement outcome β was
detected, then the unnormalized output state is [18]

|ψ(β)〉 =
√

1 − λ2e−(1−λ2) |β|2
2 D[(G − λ)β]

× [(1 − λ2)β∗|0〉 + λ|1〉], (13)

where λ = tanh r and D̂(α) = exp(αâ† − α∗â) is the displace-
ment operator. The probability of finding the outcome in the
set � then reads

P� = 1

π

∫
�

〈ψ(β)|ψ(β)〉d2β

= 1 − [1 + (1 − λ2)2K2]e−(1−λ2)K2
, (14)
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and the normalized density matrix of the output state is

ρ� = 1

πP�

∫
�

|ψ(β)〉〈ψ(β)|d2β. (15)

The Wigner function in the origin of the state is then easy
to calculate as the expectation value W�(0) = Tr[ρ�(−1)n]/π
[28] of the parity operator (−1)n. Substituting into the latter
formula from Eqs. (13) and (15) and performing the integration
over β, we arrive at the following output Wigner function in
the origin:

W�(0) = (1 − λ2)

πP�

{
−λ2

a

(
1 − e−aK2)

+ (λ2 − 2Gλ + 1)2

a2

[
1 − (1 + aK2)e−aK2]}

,

(16)

where a = (1 − λ2) + 2(G − λ)2. As the postselection inter-
val K vanishes, the role of optimized displacement becomes
negligible and the Wigner function in the origin approaches
the original value W�(0) = −1/π of the single-photon state,
irrespective of the squeezing used to produce the shared entan-
gled state. It corresponds to the result obtained previously for
the fidelity of teleportation [16,18]. We performed numerical
optimization of the gain G and depicted the Wigner function in
the origin (16) by the dash-dotted curve in Fig. 1 for K = 0.3.
The corresponding success probability P� is depicted by the
solid curve in Fig. 2.

The figure shows that conditional teleportation substantially
outperforms the optimal unconditional teleportation, of course,
at the expense of the probabilistic nature of the protocol.
For example, conditional teleportation with K = 0.3 gives
for −3 dB squeezing P� = 0.0112 and W�(0)

.= −0.2174,
for −5 dB we get P� = 0.0187 and W�(0)

.= −0.284, for
−7 dB we get P� = 0.0223 and W�(0)

.= −0.3056 and for
−10 dB we get P� = 0.0198 and W�(0)

.= −0.3152. The
obtained values indicate that conditional teleportation allows
the achievement of high negative values of the Wigner function
in the origin even for moderate levels of squeezing, equal to
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FIG. 2. Success probability P� versus squeezed variance Vsq for
conditional teleportation of the single-photon Fock state (solid curve)
and the state ρη with η = 0.6304 (dashed curve) for K = 0.3. See
text for details.

0 5 10 15 20
0

1 2

1

2

3

4

Vsq dB

G
op

t

FIG. 3. Optimal normalized gain Gopt (solid curve) versus
squeezed variance Vsq for teleportation of a single-photon Fock state.
The dashed curve corresponds to the gain of teleportation upon
minimizing the added output noise [29] and the dash-dotted curve
corresponds to the gain of teleportation upon maximizing the average
teleportation fidelity [21]. See text for details.

approximately −3 dB, at the cost of a roughly 1.1% probability
of success.

To gain deeper insight into the performance of teleportation
that is optimal for negativity of the Wigner function in the
origin for Fock state |1〉, we display by the solid curve in Fig. 3
the optimal gain Gopt as a function of the squeezed variance
Vsq. We see from the figure that for squeezing of less than
−5.52 dB, optimal teleportation works as a phase-insensitive
amplifier, while for larger squeezing it is a weak attenuator,
approaching the unity-gain regime in the limit of infinitely
large squeezing. It is of interest to compare the optimal gain
Gopt with the gain G′

opt of teleportation that is optimal in the
sense that it adds for a given noise in Alice’s measurement
outcomes the least possible noise into the output state [29]. In
this protocol the optimal gain depends on the squeezing of the
shared two-mode squeezed vacuum state as G′

opt = coth(2r)
and it is depicted by the dashed curve in Fig. 3. It is clearly
visible from the figure that teleportation adding minimum
noise is not optimal for teleportation of a Wigner function
in the origin of the Fock state |1〉. While the first teleportation
is a phase-insensitive amplifier for all levels of squeezing, the
latter one acts like a phase-insensitive attenuator for squeezing
larger than −5.52 dB. We should also stress here that our tele-
portation protocol that is optimal from the point of view of the
output Wigner function in the origin differs from the optimal
teleportation of the single-photon Fock state maximizing the
average teleportation fidelity that was investigated in [21]. In
the latter protocol the optimal normalized gain, depicted by
the dash-dotted curve in Fig. 3, always lies between 1/

√
2

and 1, and therefore the teleportation maximizing the average
teleportation fidelity realizes a phase-insensitive attenuator for
all levels of squeezing.

Up to now we have considered teleportation of Fock state
|1〉. In practice, states with a negative Wigner function are
prepared by a single-photon subtraction from a squeezed
state [30]. The subtraction is implemented by mixing of a
squeezed state squeezed in the position quadrature xin with
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variance 〈(�xin)2〉 = e−2s/2 on a beam splitter with amplitude
transmissivity

√
τ , followed by projection of one of its outputs

on Fock state |1〉. As a result we obtain the squeezed single-
photon Fock state S(t)|1〉, where S(t) = exp[(t/2)(a2 − a†2

)]
is the squeezing operator and t is the squeezing parameter
satisfying tanh t = τ tanh s. The state has the Wigner function
in the origin of the form

W (sq)
in (rin) = 1

π

(
2rT

inγ
−1rin − 1

)
exp

( − rT
inγ

−1rin
)
, (17)

where γ = diag(e−2t ,e2t ). Substituting the Wigner function
into formula (2) and carrying out the integration, we arrive at
the following output Wigner function:

W
(sq)
out (rout) =

[
2rT

outZrout + detQ − (detS)2

detγ̃

]

× exp
(−rT

outγ̃
−1rout

)
π

√
detγ̃

, (18)

where Z = γ̃ −1Sγ STγ̃ −1, γ̃ = Sγ ST + Q, and the matrices
S and Q are given in Eqs. (4) and (5). In the origin the output
Wigner function reads

W
(sq)
out (0) = detQ − (detS)2

π [det(Sγ ST + Q)]
3
2

(19)

and it has the same nominator as in Eq. (6). Teleportation of the
squeezed single-photon Fock state can be easily transformed
into the optimal teleportation of the single-photon Fock
state. Obviously, it is sufficient if the teleportation simply
compensates the squeezing represented by the covariance
matrix (CM) γ , and simultaneously its overall normalized gain
is equal to Gopt. Indeed, returning to the more general protocol
with transmissivity

√
T and gains gx,p and setting the gains as

gx = etGopt/
√

R, gp = e−tGopt/
√

T and the transmissivity
such that T/R = e−2t , one finds that S = Goptdiag(et ,e−t ),
Sγ ST = G2

opt1, and Q = α(Gopt)1, where α(G) is given
following Eq. (7). Substitution of the latter expressions for
Sγ ST and Q into Eq. (19) leads, finally, to the minimal-output
Wigner function in the origin for Fock state |1〉. To illustrate
the marked difference between the value of the output Wigner
function in the origin as well as its shape for the optimal
nonunity-gain teleportation of the squeezed single-photon
state and unity-gain teleportation of the state, we plot all of the
output Wigner functions for the two scenarios in Figs. 4 and 5.

III. TELEPORTATION OF AN ATTENUATED
SINGLE-PHOTON FOCK STATE

Quantum states with a negative Wigner function prepared
currently in a laboratory have a substantially reduced nega-
tivity in comparison with Fock state |1〉 and they are mixed.
From an experimental point of view it is therefore imperative
to know the bounds one has to surpass to successfully teleport
mixed states with a negative Wigner function. In an experiment
the main source of mixedness is losses, which, in the case of
Fock state |1〉, can be most simply modeled by a purely lossy
channel that transmits the state with probability η and replaces
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FIG. 4. (Color online) Wigner function of the output state for
the optimal nonunity-gain teleportation for e2t = 2, Vsq = −3 dB,
and transmissivity

√
T = 1/

√
3. The Wigner function in the origin

attains the negative value of W
(sq)
out (0)

.= −9.10−3. See text for details.

it with a vacuum state with probability 1 − η. At the output of
the channel we get the mixed state

ρη = η|1〉〈1| + (1 − η)|0〉〈0| (20)

with the Wigner function in the origin equal to W
(η)
in (0) =

(1 − 2η)/π , which is negative if η > 1/2. Making use of
formula (2), where we set S = G1 and Q = α(G)1, we arrive
at the output Wigner function in the origin in the form

W
(η)
out (0) = 1

π

{
η

α(G) − G2

[α(G) + G2]2
+ 1 − η

α(G) + G2

}
. (21)

This formula allows us to calculate, for a given probability
η, the threshold value of the squeezing above which the
output state has a negative Wigner function in the ori-
gin. From the condition W

(η)
out (0) < 0 we therefore obtain,
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FIG. 5. (Color online) Wigner function of the output state for the
unity-gain teleportation for e2t = 2 and Vsq = −3 dB. The Wigner
function is equal to 0 in the origin.
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after some algebra, that the Wigner function in the ori-
gin, (21), is negative if the squeezing parameter r satisfies
r > r

(G)
th = arctanh

√
(1 − η)/η. By setting G = 1 in for-

mula (21) and repeating the preceding calculation, one finds,
in contrast, that the output Wigner function in the origin
for unity-gain teleportation is negative if the squeezing
parameter r satisfies r > r

(1)
th = ln

√
2/(2η − 1). In Fig. 6

we plot the dependence of the threshold squeezed variances
V

(G)
th = e−2r

(G)
th /2 and V

(1)
th = e−2r

(1)
th /2 on the probability η.

It is apparent from the figure that starting at η = 1, the
squeezing costs increase slowly with decreasing probability
η up to η ≈ 0.6. For probabilities less than approximately
0.6, which correspond to the negative values of the Wigner
function already demonstrated experimentally, the squeezing
costs increase dramatically as η approaches η = 0.5. As an
illustrative example, consider the state ρη with η = 0.6304,
corresponding to W

(η)
in (0)

.= −0.083, which was recently
achieved experimentally [31]. To have the output Wigner
function in the origin negative for the state, we need the
squeezing parameter r > r

(G)
th = 1.0098, corresponding to a

squeezed variance Vsq larger than −8.77 dB. Further, the
threshold squeezing is apparently lower for the optimal
nonunity-gain teleportation than for unity-gain teleportation,
and the difference increases with increasing probability η up to
−3 dB for η = 1. In Fig. 7 we plot the output Wigner function
in the origin for the state with η = 0.6304 versus the squeezed
variance Vsq. Figure 7 reveals a relatively steep decrease in the
Wigner function in the origin with increasing squeezing for
squeezed variance up to Vsq ≈ −14 dB. For larger squeezing a
saturation effect occurs when a small decrease in the value of
the Wigner function in the origin requires a large increase in
the squeezing. Figure 7 also illustrates that the observation of a
reasonably large negativity of the Wigner function at the output
of teleportation will require the highest squeezing levels ever
achieved. For example, a squeezed variance Vsq = −10 dB,
which was recently observed experimentally [32], would
yield an output Wigner function in the origin for optimal
nonunity-gain teleportation of W

(η)
out (0)

.= −0.0135. Further
improvement can be reached again by using the conditional
teleportation with optimized gain. For the state ρη at the

8 10 12 14 16 18 20 22
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FIG. 7. Output Wigner function in the origin versus the
squeezed variance Vsq for optimal nonunity-gain teleportation (solid
curve), unity-gain teleportation (dashed curve), and optimal con-
ditional teleportation with K = 0.3 (dash-dotted curve) for input
state η|1〉〈1| + (1 − η)|0〉〈0| with η = 0.6304. The lower dotted
curve corresponds to an input Wigner function in the origin
W (η)

in (0)
.= −0.083. See text for details.

input we get the output Wigner function in the origin in the
form

W
(η)
� (0) = ηW

(1)
� (0) + (1 − η)W (0)

� (0), (22)

where W
(1)
� (0) = (P�/P

(η)
� )W�(0) and

W
(0)
� (0) = (1 − λ2)

πP
(η)
� a

(
1 − e−aK2)

, (23)

where

P
(η)
� = 1 − [1 + η(1 − λ2)2K2]e−(1−λ2)K2

(24)

is the success probability, P� is defined in Eq. (14), W�(0) is
defined in Eq. (16), and a is defined following Eq. (16). As the
postselection interval K vanishes, the Wigner function in the
origin approaches its lowest value,

W
(η)
�,K=0(0) = 1

π

1 − η − ηλ2

1 − η + ηλ2
, (25)

which can be achieved by conditional Gaussian teleportation of
the attenuated single-photon state, at the expense of the success
rate. The threshold for preserving the negativity of the Wigner
function is clearly the same as for non-unity gain unconditional
teleportation, that is, r

(cond)
th = r

(G)
th = arctanh

√
(1 − η)/η. For

large squeezing levels the Wigner function, (25), can be
expanded in the parameter λ around the point 1 as

W
(η)
�,K=0(0) ≈ 1

π
[1 − 2η + 4η(1 − η)(1 − λ)]. (26)

Hence it follows that, compared to the ideal single-photon
Fock state, the value of the Wigner function in the origin of the
state after teleportation approaches the initial value W

(η)
in (0) =

(1 − 2η)/π only in the limit of infinitely large squeezing used
to prepare the entangled state, that is, for λ → 1. How much
squeezing is required is clearly visible from Fig. 8. This is a
substantial difference from the idealized single-photon state,
for which conditional teleportation approaches unit fidelity for
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FIG. 8. (Color online) Asymptotic Wigner function in the ori-
gin, (25), for the attenuated single-photon state ρη after conditional
teleportation dependent on the probability η and the squeezed
variance Vsq.

an arbitrary small squeezing used for production of the shared
entangled state.

To compare the negativities of the output Wigner function
for the attenuated single-photon state for conditional versus
unconditional teleportation, we plotted the output Wigner
function in the origin, (22), for K = 0.3 by the dash-dotted
curve in Fig. 7, and the corresponding success probability, (24),
by the dashed curve in Fig. 2. The gain in the conditional
teleportation is optimized numerically and it differs from the
optimal gain in the unconditional teleportation at, at most,
the third decimal place. It is apparent from the figure that
conditional teleportation markedly outperforms the optimal
unconditional nonunity-gain teleportation. For instance, for
the state ρη with η = 0.6304 and squeezed variance Vsq =
−10 dB, we obtain W

(η)
� (0)

.= −0.0209, and the corresponding
success probability is P

(η)
�

.= 0.0233, in comparison with
W

(η)
out (0)

.= −0.0135, which is obtained for the unity-gain
regime. The figure also reveals that for both teleportations,
the output Wigner function in the origin becomes negative at
the same value of the threshold squeezed variance, −8.77 dB,
which is in full accordance with our finding of the impossibility
of reducing the threshold squeezing by resorting to a condi-
tional protocol. It is also worth mentioning that the optimal
teleportation is, again, an amplifier for squeezed variance of
less than −10.84 dB and then changes to a weak attenuator
for larger squeezing, which finally approaches the unity-gain
regime in the limit of infinitely large squeezing. In comparison
with the case for the pure Fock state |1〉 depicted in Fig. 1, the
advantage of the nonunity-gain regime for the mixed state ρη

is wiped out.

IV. CONDITIONAL TELEPORTATION
WITH EXCESS NOISE

As stated in Sec. I quantum teleportation is a basic building
block for quantum computation and long-distance quan-
tum communication. In quantum computation unconditional
quantum teleportation can be used for implementation of a
deterministic gate on an arbitrary quantum state. Therefore,
deterministic transmission of a negative Wigner function by
unconditional teleportation is a necessary prerequisite for
successful gate operation. Previous analysis indicates that even

for an ideal input Fock state |1〉, the state at the output of
unconditional teleportation will have, for realistic squeezing
levels, a substantially reduced negative value of the Wigner
function in the origin. In addition, it will be mixed so
that successful transmission of the negativity of the Wigner
function of this state through the next gate will require even
larger squeezing, owing to the existence of a strict bound on
the minimum squeezing needed to teleport a negative Wigner
function of a mixed state.

In contrast, for quantum communication purposes it suffices
to implement just conditional teleportation, which will only
reduce the success rate of in any case probabilistic commu-
nication protocol. Since conditional teleportation gives, for
the currently achievable levels of squeezing, better results
than unconditional teleportation and is already applied in
quantum communication, in this section we restrict ourselves
to the analysis of conditional teleportation. In previous sections
we assumed an ideal case of pure shared entanglement
produced by mixing of two pure squeezed states. Here we take
another step toward a more realistic scenario by considering
impure squeezed states with excess noise in the antisqueezed
quadrature. We show that conditional teleportation of the
negative Wigner function of Fock state |1〉 is tolerant of
realistic values of the noise excess.

Let us therefore consider the squeezed states of modes
A and B to be momentum and position squeezed states
with squeezed quadratures Vsq = 〈(�pA)2〉 = 〈(�xB)2〉 and
the antisqueezed quadratures Van = 〈(�xA)2〉 = 〈(�pB)2〉. Let
us further denote the input state ρin, the shared entangled state
ρAB , and, by �inA(β), the projector onto the Bell state |β〉inA =∑∞

n=0 Din(β)|n〉in|n〉A [33], where D(β) is the displacement
operator defined following Eq. (13). The state at the output of
teleportation, conditioned on the measurement outcome β =
(x̄u + ip̄v)/

√
2 and displaced according to the measurement

outcome with normalized gain G by Bob, then reads

ρ̃B(β) = DB(Gβ)TrinA[ρin ⊗ ρAB�inA(β)]D†
B(Gβ). (27)

The state is not normalized and its norm, P (β) = TrB[ρ̃B(β)],
gives the probability density of finding the outcome β.
The probability that the measurement outcome β falls into
the set � then reads P� = (1/π )

∫
�

P (β)d2β, and the
corresponding conditionally prepared normalized density
matrix is given by ρ� = 1

πP�

∫
�

ρ̃B(β)d2β. Making use of
the formula for the Wigner function of state ρ� of the form
W�(0) = (1/π )TrB[ρ�(−1)n] [28], we find that the output
Wigner function in the origin can be expressed as the integral,

W�(0) = 1

πP�

∫
�

Wρ̃B (β)(0)d2β, (28)

of the Wigner function in the origin Wρ̃B (β)(0) of state (27).
First, we analyze the most simple case, when ρin = |1〉in〈1|.

Then the probability density P (β) reads

P (β) =A 〈1|DA(β∗)ρAD
†
A(β∗)|1〉A, (29)

where ρA = TrBρAB is the reduced state of mode A. The
reduced state is a thermal state with a mean number of
thermal photons 〈n〉 = (V − 1)/2, where V = Van + Vsq, and
the probability density is therefore an overlap of the displaced
thermal state with Fock state |1〉. Expressing the overlap in
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terms of the Wigner functions and performing the needed
integration, we arrive at a probability density of the form

P (β) = 〈n〉
(1 + 〈n〉)2

[
1 + |β|2

〈n〉 (1 + 〈n〉)
]

e
− |β|2

1+〈n〉 . (30)

For the sake of computational simplicity we assume the set �

to be a square in the plane [x̄u,p̄v] of measurement outcomes
centered in the origin with sides of length 2a parallel to the
coordinate axes. Integration of the probability density, (30),
over the square then yields the success probability P� , the
explicit form of which, in terms of the error function, is given
by Eq. (A1) in the Appendix. For measurement outcome β the
output state, (27), attains the form

ρ̃B(β) = DB(Gβ)A〈1|DA(β∗)ρABD
†
A(β∗)|1〉AD

†
B(Gβ), (31)

where we used the relation in〈1|�inA(β)|1〉in =
D

†
A(β∗)|1〉A〈1|DA(β∗). The Wigner function in the origin

of the state, (31), needed to calculate the Wigner function
in the origin, (28), can then be calculated from the overlap
formula,

Wρ̃B (β)(0) = 2π

∫ +∞

−∞
WAB(ξA − ξ̄A, −ξ̄B)WA(ξA)dξA, (32)

where ξA = (xA,pA)T , ξ̄A = (x̄u,−p̄v)T , ξ̄B = G(x̄u,p̄v)T ,
and WA(ξA) is the Wigner function of Fock state |1〉 given
in Eq. (1), and

WAB(ξ ) = 1

4π2VsqVan
e−ξT γ −1

ABξ , (33)

where ξ = (xA,pA,xB,pB)T and γAB is the CM of the shared
state ρAB of the form

γAB =
(

V 1 Cσz

Cσz V 1

)
, (34)

where C = Van − Vsq. Note that we use notation in which the
CM of a vacuum state is equal to γvac = 1 and the matrix, (34),
is a legitimate CM of a quantum state. Namely, denoting
its submatrices A = B = V 1 and D = Cσz, one can easily
show, using the Heisenberg uncertainty relations VsqVan �
1/4, that matrix (34) satisfies the necessary and sufficient
conditions for a matrix to be a CM of a quantum state given
by the inequalities A,B > 0, detA + detB + 2detD � 1 +
detγAB , and 2

√
detAdetB + (detD)2 � detγAB + detAdetB

[34].
Now performing the integration in Eq. (32) using Eqs. (33)

and (34) and substituting the obtained formula into Eq. (28),
we finally get, after integration over β, the Wigner function in
the origin W�(0), which is explicitly given by formula (A2) in
the Appendix.

A. Conditioning on the outcome β = 0

Let us first analyze the simplest case, where we accept only
the measurement outcome β = 0. Then, using Eq. (31), we ob-
tain the normalized output state in the form A〈1|ρAB |1〉A/P (0),
where P (0) = 〈n〉/(1 + 〈n〉)2 is obtained from Eq. (30). The

10

5

0

V sq

dB

0

5

10

15

20

noise excess
dB

0.3

0.2

0.1

0.0

W
β

0
0

FIG. 9. (Color online) Output Wigner function in the origin
versus the squeezed variance Vsq = 〈(�pA)2〉 = 〈(�xB )2〉 and the
noise excess in the antisqueezed quadratures Van = 〈(�xA)2〉 =
〈(�pB )2〉 for conditional teleportation of Fock state |1〉 where we
accept only the result β = (x̄u + ip̄v)/

√
2 = 0.

Wigner function in the origin of the state can be derived with
the help of formula (32) in the form

Wβ=0(0) = − (V − 4VsqVan)

π (V − 1)

(
V + 1

V + 4VsqVan

)2

, (35)

and it is depicted in Fig. 9 as a function of the squeezed
variance Vsq and the excess noise defined as the sum of
the antisqueezed quadrature in decibels and the squeezed
quadrature in decibels. Figure 9 shows, again, that for no noise
excess, Fock state |1〉 is perfectly teleported for arbitrarily
small nonzero squeezed variance Vsq, as is also apparent from
Eq. (13). For a nonzero noise excess there is a threshold
squeezed variance Vth one has to overcome to have a negative
output Wigner function in the origin. The threshold squeezed
variance can be determined from the condition V − 4VsqVan =
0. We calculated the threshold squeezed variance for several
values of the noise excess in Table I. The calculated values
indicate that the threshold squeezed variance increases very
slowly with increasing noise excess and approaches the limit
value Vth,∞ = 1/4, corresponding to −3 dB in the limit of
infinitely large noise excess. Thus in the case of postselection
of the measurement outcome β = 0, the teleportation of a
negative Wigner function is strongly tolerant of the noise
excess.

B. Finite postselection interval

Next we focus on the case of a finite postselection interval.
The success probability and the Wigner function in the origin
are given by Eqs. (A1) and (A2) in the Appendix, and they
are displayed in Figs. 10 and 11 for a = 0.3 and a unity-gain
regime (G = 1). Inspection of the graph in Fig. 11 reveals that
it is just the graph in Fig. 9 displaced along the z axis. In

TABLE I. Threshold squeezed variance Vth for a given noise
excess if we postselect the measurement outcome β = 0.

Noise excess (dB) 1 2 3 4 5
Vth (dB) −1.62 −2.06 −2.32 −2.49 −2.62
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FIG. 10. (Color online) Success probability P� versus the
squeezed variance Vsq = 〈(�pA)2〉 = 〈(�xB )2〉 and the noise excess
in the antisqueezed quadratures Van = 〈(�xA)2〉 = 〈(�pB )2〉 for
conditional unity-gain teleportation of Fock state |1〉, where we accept
only the outcomes of the Bell measurement [x̄u,p̄v] that fall into the
square centered in the origin with side 2a, where a = 0.3.

other words, conditioning on measurement outcomes from a
finite postselection interval leads to a uniform reduction of the
value of the output Wigner function in the origin in comparison
with the case where we accept only the outcome β = 0. This
naturally entails the emergence of a nonzero threshold on
squeezing that has to be overcome to successfully teleport a
negative Wigner function. The threshold still increases slowly
with increasing noise excess as is apparent from Table II.

C. Attenuated single-photon state

Finally, we discuss the situation where we have the
attenuated single-photon state at the input, that is, ρin = ρη,
where ρη is defined in Eq. (20), and we condition on the
measurement outcome β = 0.

10

5

0

V sq

dB

0

5

10

15

20

noise excess
dB

0.3

0.2

0.1

0.0

W
0

FIG. 11. (Color online) Output Wigner function in the origin ver-
sus the squeezed variance Vsq = 〈(�pA)2〉 = 〈(�xB )2〉 and the noise
excess in the antisqueezed quadratures Van = 〈(�xA)2〉 = 〈(�pB )2〉
for conditional unity-gain teleportation of Fock state |1〉, where we
accept only the outcomes of the Bell measurement [x̄u,p̄v] that fall
into the square centered in the origin with side 2a, where a = 0.3.

TABLE II. Threshold squeezed variance Vth for a given noise
excess for a finite postselection interval.

Noise excess (dB) 0 1 2 3 4 5
Vth (dB) −1.13 −1.77 −2.12 −2.35 −2.51 −2.63

In this case the probability density reads

P (η)(β) = ηP (β) + (1 − η)P (0)(β), (36)

where P (β) is given in Eq. (30) and

P (0)(β) = A〈0|DA(β∗)ρAD
†
A(β∗)|0〉A

= e
− |β|2

1+〈n〉

1 + 〈n〉 . (37)

For β = 0 we get, in particular, P (η)(0) = 2(V + 1 − 2η)/
(V + 1)2. Further, conditioned on the measurement outcome
β = 0, we get the unnormalized output state in the form

ρ̃
(η)
B (0) = ηA〈1|ρAB |1〉A + (1 − η)A〈0|ρAB |0〉A. (38)

Calculating, finally, the Wigner function in the origin of the
normalized state ρ̃

(η)
B (0)/P (η)(0), we obtain

W
(η)
β=0(0) = 4VsqVan + V (1 − 2η)

π (V + 1 − 2η)

(
V + 1

V + 4VsqVan

)2

. (39)

Hence, one can calculate the threshold squeezed variance
from the condition 4VsqVan + V (1 − 2η) = 0. Expressing the
antisqueezed quadrature as Van = (1/2)(N/Vsq), where N
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noise excess dB

V
th

dB

FIG. 12. Threshold squeezed variance Vth versus the noise excess
for conditional teleportation of input state η|1〉〈1| + (1 − η)|0〉〈0| for
η = 1 (solid curve), η = 0.9 (dashed curve), η = 0.8 (dotted curve),
η = 0.7 (dash-dotted curve), and η = 0.6 (thick solid curve), where
we accept only the result β = (x̄u + ip̄v)/

√
2 = 0.
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stands for the noise excess (N = 1/2 for no noise excess),
we get the threshold squeezed variance in the form

Vth = 2N −
√

4N2 − 2N (2η − 1)2

2(2η − 1)
. (40)

The dependence of the threshold variance on the noise excess
is plotted in Fig. 12 for several values of the probability η. The
threshold squeezing dramatically increases with decreasing
probability of Fock state |1〉, but for realistic values of the
probability η in the interval 0.6 < η < 0.7, it still remains
in the region of achievable squeezing levels. As in the
previous cases a saturation effect is observed and the threshold
squeezed variance approaches Vth,∞ = (2η − 1)/4 in the limit
of infinitely large noise excess. To illustrate the tolerance of
the teleportation of a negative Wigner function of noise excess,
even for mixed input states, we consider, again, the example of
the input state ρη with η = 0.6304 discussed previously and a
noise excess of 4 dB. Using Eq. (40) we then get a threshold
squeezed variance Vth equal to −8.82 dB, and it approaches
Vth,∞ = −8.85 dB with an increasing noise excess.

V. DISCUSSION AND CONCLUSIONS

We have studied teleportation of a pure single-photon Fock
state and a mixed attenuated single-photon Fock state by the
standard continuous-variable teleportation protocol [3]. We
optimized analytically the gain of the teleportation so as to
minimize the output Wigner function in the origin. For the
single-photon Fock state we found that an arbitrarily weak
squeezing used to create the shared entangled state is sufficient
for successful teleportation of the negative value of its Wigner
function in the origin. For an attenuated single-photon state we
have shown that there is a strict bound on the squeezing that
has to be overcome to have a negative output Wigner function
in the origin. In both cases the negative value of the output
Wigner function in the origin can be increased by using a
conditional teleportation with a reasonably high success rate.
However, in the case of the attenuated single-photon state, the
bound on squeezing one has to surpass to observe a negative
output Wigner function is the same for both unconditional and
conditional teleportation, and its initial value can be reached
only asymptotically in the limit of a high squeezing. Finally,
we have taken into account noise excess in the antisqueezing
and we have shown that conditional teleportation of a negative
Wigner function exhibits a strong tolerance of the noise excess.

Now let us discuss the consequences of our observations
for quantum computation and quantum communication. For
quantum computation, quantum teleportation was considered
as a possible scenario of how to carry out a deterministic
operation on an unknown arbitrary quantum state. A basic
requirement is to be able to preserve the negativity of the
Wigner function through the operation: in our simplest case,
through teleportation. Therefore, we can take the preservation
of the negativity as a necessary condition for quantum gate
performance. We observed that, to preserve the negativity of
the Winger function, either the input state has to be very close
to a single-photon state or, for the imperfect single-photon
state (the attenuated version), an extremely high squeezing
is required. If the negativity of the Wigner function must be
preserved (e.g., at 95% of its original value), the requirement is

even more demanding. Clearly, it is very important to protect
the input state against even the loss, since it substantially
increases the squeezing required for teleportation. In summary,
the cost (the squeezing required to prepare the entangled state
in the teleportation) of implementing the operation in this
measurement-induced way is quite high. It can stimulate a
further increase in the squeezing in the experiments, but this
resource seems also to be practically limited.

In contrast, for quantum communication with repeaters,
the preservation of negativity of the Wigner function through
Gaussian teleportation seems to be just a reasonable condition
to efficiently extend the quantum key distribution between
two distant repeaters. Further, it is enough to implement
conditional teleportation, since the key distribution is a prob-
abilistic protocol anyway. The minimal squeezing required
to keep the negativity of the Wigner function is practically
unchanged by postselections. However, for an almost-perfect
single-photon state, the threshold squeezing is low and the
input negativity of the Wigner function can be archived for the
experimentally feasible values of squeezing (up to −10 dB
of squeezing). Advantageously, for a strongly attenuated
single-photon state, the postselection improves the value of
the negativity up to a maximum for the given squeezing used
to produce entanglement. However, to reach the original value,
postselection must be combined with enhancement of the
squeezing. In summary, the cost (the squeezing required to
prepare the entangled state in the teleportation) is lower for
the communication application of the teleportation of highly
nonclassical states if the negativity of the Wigner function is
already preserved by teleportation.

Finally, we want to point out one important issue. Since tele-
portation with finite squeezing always lowers the negativity of
the Wigner function, the next teleportation will transfer an al-
ready imperfect version of the highly nonclassical state and the
squeezing threshold (or squeezing required to almost maintain
the negativity) will become more demanding for the implemen-
tation. This means that small imperfections or errors are ac-
tually amplified through multiple Gaussian teleportations and
any correction mechanism (quantum error correction or quan-
tum repeater) has to be applied very frequently and very effi-
ciently to maintain the threshold squeezing in a feasible range
to be able to transmit the negativity of the Wigner function.
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APPENDIX

The success probability P� is given by

P� = erf(b)

[
erf(b) − 2be−b2

√
π (1 + 〈n〉)

]
, (A1)

012322-10



CONTINUOUS-VARIABLE TELEPORTATION OF A . . . PHYSICAL REVIEW A 82, 012322 (2010)

where b = a/
√

2(1 + 〈n〉) and erf(z) = (2/
√

π )
∫ z

0 e−t2
dt is

the error function.
The conditional output Wigner function in the origin

W�(0) reads

W�(0) = erf(a
√

q)

4πP�VsqVanαq

[(
2

α
+ 2δ2

α2q
− 1

)

× erf(a
√

q) − 4δ2a

α2√πq
e−qa2

]
, (A2)

where

q = V (1 + G2) − 2CG + G2

V + 4VsqVan
, α = V + 4VsqVan

4VsqVan
,

δ = CG − V

4VsqVan
.
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